INESC TEC
INESC TEC
INESC TEC
Search results for:
Filter your results

0 Search results

Luís Carlos Coelho

Luís Carlos Coelho

Luís Carlos Costa Coelho received his graduation in Physics Engineering in 2006 and MSc in Instrumentation and Microelectronics in 2007 both by University of Coimbra in Portugal. At the Physics Department of the same University he developed research in Atomic and Nuclear Instrumentation with focus on gaseous scintillation counters towards high energy radiation. In this context he was directly involved in international experiments as "Xenon Direct Dark Matter Search" at the National Laboratory of Gran Sasso in Italy, aiming search dark matter through the detection of weakly interacting massive particles.

In 2010 he started to work in optical fibre sensors at the Optoelectronics and Electronic Systems of INESC Porto (now INESC TEC) in Portugal, mainly applied to hydrogen detection under the project MICROPHYTE-Metabolic engineering of chlamydomonas and environmental optimization for hydrogen production and release.

In 2016 received his Ph.D. degree in Physics at the University of Porto, Porto, Portugal with the focus on thin films technology applied to optical fibre optic sensors in collaboration with the Centre for Applied Photonics of INESC TEC, Porto, Portugal.

His main research interests are related to the detection and monitoring of chemical entities and biological targets through the application of a wide variety of optical technologies, namely optical spectroscopy, using fluorescence or absorption, evanescent field-based devices, Long Period Fiber Gratings, the excitation of electromagnetic surface waves as plasmonics, and optical intergerometers. His main activities are focused on the development of sensors based on the manipulation of optical fibers with special physical polishing and chemical etching, on the deposition of thin films of high purity materials and with UV to NIR spectroscopy techniques. It has also built the control and interrogation systems in the development of dedicated prototypes.

He has been working in several international projects related to the detection of biological and chemical elements on water namely through the development of fiber optic probes to real-time monitor dissolved carbon dioxide, pollutants, and contaminants on water systems.

In the last few years, he has published more than 90 papers in international journals with referee and over 80 papers in national and international conferences with more than 3900 citations and an h index of 25 (Scopus 06.10.2023).

Presently he has a research contract with INESC TEC under the FCT program Scientific Employment Stimulus 2018 aiming the study and development of technological advanced optical sensors for marine applications.

He is supervisor of several Master and PhD Students working in the same subject.

He has been refereeing in a wide range of international journals as IEEE, OSA, SPIE, Elsevier, Pier, MDPI and Springer and is currently Editor of a special issue of the Sensors Journal of MDPI – Optical Fibre Sensors 2018-2019.

He was also the president of the University of Porto SPIE Student Chapter in 2014 and a member of the organization team of the 9th Advanced Study Course on Optical Chemical Sensors and Biosensors (ASCOS 2015). 

Projects

SAFEWATER

Water pollution is a severe worldwide problem that urgently requires development of novel sensing concepts allowing for monitoring contaminants at very low concentrations.The ambitious aim of the SAFE WATER project is to design, implement and validate a new portable optical instrument, for in situ and multiplexing detection and determination of several emerging microcontaminants (EMCs) like estrogens, pharmaceuticals, drugs and new generation pesticides which represent contaminants that have recently joined the European Union (EU) watching list on the monitoring of water quality. The heart and the novelty of such proposed prototype consist in the use of special hollow – core whispering gallery modes (WGM) microcavities – named optical microbubble resonators (OMBRs) for their particular geometry – able to show a high value for their quality factor Q (> 10^7, in air) and, consequently, guarantee high sensitivity and extremely low threshold for the limit of detection LOD (down to pg/L). For the selective recognition of different pollutants, the inner surface of these microresonators will be coated with films of molecularly imprinted polymers (MIPs) or functionalized with specific antibodies. The basic modules of the platform will include (i) a WGM microbubble resonator array integrated on one silicon chip as the optical sensing element capable of multiplexed pollutant determination, (ii) the microfluidic circuit, in which the liquid pollutant sample is initially mixed with the reagents required, and then directed to the integrated chip for optical determination, and (iii) the optoelectronic system for the interrogation of the WGM array and the data acquisition. Finally, these modules will be fully integrated in the prototype, which will be used for the determination of contaminants in water samples.

On chip whispering gallery mode optical microcavities for emerging microcontaminant determination in waters

SolSensors

Project Datasheet

Development of advanced fibre optic sensors to monitor the durability of concrete and reinforced concrete structures
View all projects

Publications

From localized to propagating surface plasmon resonances in Au nanoparticle coated optical fiber sensors and its implications in biosensing

dos Santos, P;Mendes, J;Pérez-Juste, J;Pastoriza-Santos, I;Almeida, J;Coelho, L;

2024

Photonics Research

Optical pH Sensor Based on a Long-Period Fiber Grating Coated with a Polymeric Layer-by-Layer Electrostatic Self-Assembled Nanofilm

Pereira, JM;Mendes, JP;Dias, B;de Almeida, JMMM;Coelho, LCC;

2024

SENSORS

Observation of Surface Plasmon Polaritons and Bloch Surface Waves in a Metal-Dielectric Photonic Crystal

Dias, BS;de Almeida, JMMM;Coelho, LCC;

2024

IEEE SENSORS JOURNAL

Impact of gaseous interferents on palladium expansion for hydrogen optical sensing: A time stability study

Almeida, MAS;Almeida, JMMMD;Coelho, LCC;

2024

OPTICS AND LASER TECHNOLOGY

View all publications

Supervised theses

Blockchain and business value creation

Kerley de Lourdes Silva

D - 2023

UP-FEP