INESC TEC
INESC TEC
INESC TEC
Search results for:
Filter your results

0 Search results

Joaquim João Sousa

Joaquim João Sousa

Professor Auxiliar com Agregação da Universidade de Trás-os-Montes e Alto Douro (UTAD) e doutorado em Ciências da Engenharia Geográfica, pela Universidade do Porto e pela Universidade de Delft (Holanda), tendo apresenta a tese “Potential of integrating PSInSAR Methodologies in the Detection of Surface Deformation”. Atualmente, é Investigador (membro integrado) do Centre for Robotics in Industry and Intelligent Systems (CRISS), do INESC TEC/Polo UTAD, e investigador (colaborador) do CITAB (Centre for the Research and Technology of Agro-Environmental and Biological Sciences). Nos últimos anos tem-se dedicado, sobretudo, à utilização de Veículos Aéreos Não Tripulados (UAV) para aplicações agroflorestais. Utiliza imagens aéreas de elevada resolução, obtidas por diferentes sensores (RGB, NIR, Multiespectrais, Hiperespectrais e Térmicos) para, usando técnicas de processamento de imagem e desenvolvimento de algoritmos, extrair informações e parâmetros relevantes, sobretudo, na vinha, soutos e olivais. Estas técnicas são, no entanto, extensíveis à deteção e monitorização de grande parte das espécies arbóreas, que integram as nossas florestas, e de vegetação rasteira. É autor de várias publicações em revistas internacionais da especialidade do Remote Sensing. Participa em vários projetos de investigação, destacando-se o PARRA (Plataforma integrAda de monitoRização e avaliação da doença da flavescência douRada na vinha), em que é líder por parte da UTAD (SI I&DT, aviso Nº 08/SI/2015, Projeto em Co-Promoção, parceiros do projeto: TEKEVER ASDS - empresa líder, UTAD, Instituto Politécnico de Viana do Castelo, INIAV, Agrociência. Montante total atribuído 1.602.245,58€) e é membro do projeto Plataforma de Inovação da Vinha e do Vinho, linha Remote sensing and detection of grapevine diseases (Projeto I&DT pelo Norte2020, com um financiamento global de 4.500.000,00 €).

Projects

Fasten

Industry 4.0 has now extended its focus to a broader set of technologies rather than just CPS, and to the most vital processes included in the product and production systems lifecycle, rather than just to production. In all the dialects where the Industry 4.0 language is spoken, Industrial Internet of Things, Additive Manufacturing and Robotics from the technology side and Mass Customization, Product-Service Systems and Sustainable Manufacturing from the business side always represent key cornerstones and top priority challenges. FASTEN “mission” is to develop, demonstrate, validate, and disseminate an integrated and modular framework for efficiently producing custom-designed products. More specifically, FASTEN will demonstrate an open and standardized framework to produce and deliver tailored-designed products, capable to run autonomously and deliver fast and low cost additive manufactured products. This will be achieved by effectively pairing digital integrated service/products to additive manufacturing processes, on top of tools for decentralizing decision-making and data interchange. Sophisticated software technologies for self-learning, self-optimizing, and advanced control will be applied to build a full connected additive manufacturing system. ThyssenKrupp and Embraer are two of these companies that must overcome challenges of this nature, in order to cope with an increasing demand diversity, products with shorter life cycles, and the need for supplying low volumes per order, requiring flexible solutions capable to effectively manufacture and deliver personalized products.

Flexible and Autonomous Manufacturing Systems for Custom-Designed Products

ROBOCARE

Research and development of modular robotic technology for the introduction of advanced agronomic practices, reducing the reduction of labor burden and the increase in the ergonomics of the operations carried out and the consequent increase in labor productivity and economic profitability of crops.

ROBOCARE
View all projects

Publications

Empowering intermediate cities: cost-effective heritage preservation through satellite remote sensing and deep learning

Rodríguez Antuñano, I;Sousa, JJ;Bakon, M;Ruiz Armenteros, AM;Martínez Sánchez, J;Riveiro, B;

2024

INTERNATIONAL JOURNAL OF REMOTE SENSING

Detection of Leak Areas in Vineyard Irrigation Systems Using UAV-Based Data

Pádua, L;Marques, P;Dinis, LT;Moutinho Pereira, J;Sousa, JJ;Morais, R;Peres, E;

2024

DRONES

Classification of Grapevine Varieties Using UAV Hyperspectral Imaging

López, A;Ogayar, CJ;Feito, FR;Sousa, JJ;

2024

REMOTE SENSING

Comparative Evaluation of Remote Sensing Platforms for Almond Yield Prediction

Guimaraes, N;Fraga, H;Sousa, JJ;Pádua, L;Bento, A;Couto, P;

2024

AGRIENGINEERING

View all publications

Supervised theses

Real-time, Power-efficient Hardware acceleration of deep learning applications in Embedded Reconfigurable Devices for Advanced Driving Assistance Systems

Amir Hossein Farzamiyan

D - 2024

UP-FEUP

Centres

Robotics in Industry and Intelligent Systems

At the Centre for Robotics and Intelligent Systems, we develop innovative solutions to leverage robotics in the industrial, agricultural, and forestry contexts, driving the digital transformation of the industry. We take a practical approach - from design to deployment - to test the navigation and localisation of mobile robots, explore advances in 2D/3D industrial vision and advanced detection, while also focusing on industrial and collaborative robotics, as well as human-robot interfaces. Our TRIBE LAB is fertile ground for innovative ideas about the agriculture of the future; we develop prototypes and promote excellence in agricultural robotics and IoT technology: with prototypes, advanced sensors (LiDAR, AI cameras), and rapid prototyping tools, we accelerate the development of solutions for the agroforestry sector. We are also present at the iiLab, where we combine applied research, technological demonstration, and controlled environment testing, promoting the integration of emerging technologies into industry. From intelligent robotic cells and cyber-physical systems to data analysis and AI, it is an innovation space where companies can experiment with and validate solutions for the factory of the future. With a multidisciplinary team, and following European agendas, our research work combines fundamental science and application, impacting the design of solutions for Industry 4.0, fostering competitiveness and the digital transformation of the sector.

Robotics in Industry and Intelligent Systems