INESC TEC
INESC TEC
INESC TEC
Search results for:
Filter your results

0 Search results

Diana Faria Capela

Diana Faria Capela

Projects

GREENPEG

GREENPEG

FLAPSYS

The main goal of FlaPsys is the development of an advanced spectroscopy system capable of real time element identification and quantification in complex mineral samples. The system is a unique tool enabling detailed study of Lithium Ores from northern Portugal. In the context of critical raw materials and high tech metals, the Portuguese territory presents great potential, both on land where strategic metals (eg. Li) are available, or on the ocean depths where a vast continental platform holds significant mining potential. It is therefore, of strategic National importance to investigate: i) geological processes producing ore deposits of critical metals, lithium, antimony, and rare earth elements (REEs), and ii) utilization of these metals in industrial products. The link between these research topics lies in the need to understand the mechanisms by which such critical metals are transported and stored in liquids, gases, and crystals at scales down to a spatial scale of 1 mm. However, such detailed study, is particularly difficult for light elements such as Li where conventional techniques such as XRF do not work. In this context, the availability of a tool for real time analysis of Li and other strategic metals in complex minerals is of critical importance. Laser induced breakdown spectroscopy (LIBS) is one of the few techniques able to tackle such task with an easy to use system both in the lab and in the field. Nevertheless, while portable LIBS system are starting to be available, their quantification ability is still unreliable. This derives from lack of suitable spectra databases and robust algorithms that are unable to account for matrix effects and super-position of emission bands in complex minerals. FlapSys team, will put forward an innovative approach to LIBS design, supported by a Fiber Laser with unique features, that will enable a higher performance: multi-pulse, compact, high spatial resolution, high speed system, suitable for operation in gas, liquid and solid phase. The team will establish a knowledge database of LIBS spectra, coupled with geochemistry data (electron microscope, Raman, UV-NIR) of reference materials, and artificial intelligence algorithms that will enable a reliable quantitative LIBS tool. Flapsys joins INESC TEC, that will adapt an existing LIBS system recently developed for mining applications in H2020 project VAMOS, and U Porto Geosciences Department, with state of the art geochemistry equipment and access to mining sites in Northern Portugal Prototype validation tests will focus the study of the critical metal: lithium and its ores, and the exploratory analysis of contaminated soils From this project will result a competitive edge for the region and a unique tool in Portugal enabler of highly advanced studies of complex minerals, with potential for much more, from environmental analysis to deep ocean exploration incorporated in autonomous vehicles.

Fiber laser plasma spectroscopy system for real time element analysis
View all projects

Publications

Identification of Relevant Spectral Ranges in Laser-Induced Breakdown Spectroscopy Imaging Using the Fourier Space

Lopes, T;Capela, D;Ferreira, MFS;Guimaraes, D;Jorge, PAS;Silva, NA;

2024

APPLIED SPECTROSCOPY

Characterization of Functional Coatings on Cork Stoppers with Laser-Induced Breakdown Spectroscopy Imaging

Ferreira, MFS;Guimaraes, D;Oliveira, R;Lopes, T;Capela, D;Marrafa, J;Meneses, P;Oliveira, A;Baptista, C;Gomes, T;Moutinho, S;Coelho, J;da Silva, RN;Silva, NA;Jorge, PAS;

2023

SENSORS

Robust and interpretable mineral identification using laser-induced breakdown spectroscopy mapping

Capela D.;Ferreira M.F.S.;Lima A.;Dias F.;Lopes T.;Guimarães D.;Jorge P.A.S.;Silva N.A.;

2023

SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY

Conditioning Solid-State Anode-Less Cells for the Next Generation of Batteries

Baptista, MC;Gomes, BM;Capela, D;Ferreira, MFS;Guimaraes, D;Silva, NA;Jorge, PAS;Silva, JJ;Braga, MH;

2023

BATTERIES-BASEL

View all publications